471 research outputs found

    Predictive Power of Strong Coupling in Theories with Large Distance Modified Gravity

    Get PDF
    We consider theories that modify gravity at cosmological distances, and show that any such theory must exhibit a strong coupling phenomenon, or else it is either inconsistent or is already ruled out by the solar system observations. We show that all the ghost-free theories that modify dynamics of spin-2 graviton on asymptotically flat backgrounds, automatically have this property. Due to the strong coupling effect, modification of the gravitational force is source-dependent, and for lighter sources sets in at shorter distances. This universal feature makes modified gravity theories predictive and potentially testable not only by cosmological observations, but also by precision gravitational measurements at scales much shorter than the current cosmological horizon. We give a simple parametrization of consistent large distance modified gravity theories and their predicted deviations from the Einsteinian metric near the gravitating sources.Comment: 12 pages, Latex, to be published in New Journal of Physic

    Gravity induced neutrino-antineutrino oscillation: CPT and lepton number non-conservation under gravity

    Get PDF
    We introduce a new effect in the neutrino oscillation phase which shows the neutrino-antineutrino oscillation is possible under gravity even if the rest masses of the corresponding eigenstates are same. This is due to CPT violation and possible to demonstrate if the neutrino mass eigenstates are expressed as a combination of neutrino and antineutrino eigenstates, as of the neutral kaon system, with the plausible breaking of lepton number conservation. For Majorana neutrinos, this oscillation is expected to affect significantly the inner edge of neutrino dominated accretion disks around a compact object by influencing the neutrino sphere which controls the accretion dynamics, and then the related type-II supernova evolution and the r-process nucleosynthesis. On the other hand, in early universe, in presence of various lepton number violating processes, this oscillation, we argue, might lead to neutrino asymmetry which resulted baryogenesis from the B-L symmetry by electro-weak sphaleron processes.Comment: 15 pages; Accepted for publication in Classical and Quantum Gravit

    Neutrino Oscillations as a Probe of Dark Energy

    Full text link
    We consider a class of theories in which neutrino masses depend significantly on environment, as a result of interactions with the dark sector. Such theories of mass varying neutrinos (MaVaNs) were recently introduced to explain the origin of the cosmological dark energy density and why its magnitude is apparently coincidental with that of neutrino mass splittings. In this Letter we argue that in such theories neutrinos can exhibit different masses in matter and in vacuum, dramatically affecting neutrino oscillations. Both long and short baseline experiments are essential to test for these interactions. As an example of modifications to the standard picture, we consider simple models which may simultaneously account for the LSND anomaly, KamLAND, K2K and studies of solar and atmospheric neutrinos, while providing motivation to continue to search for neutrino oscillations in short baseline experiments such as BooNE.Comment: 5 pages, 1 figure, refs added, additional data considered, minor change in conclusions about LSN

    New CP-violation and preferred-frame tests with polarized electrons

    Get PDF
    We used a torsion pendulum containing 9×1022\sim 9 \times 10^{22} polarized electrons to search for CP-violating interactions between the pendulum's electrons and unpolarized matter in the laboratory's surroundings or the sun, and to test for preferred-frame effects that would precess the electrons about a direction fixed in inertial space. We find gPegSN/(c)<1.7×1036|g_{\rm P}^e g_{\rm S}^N|/(\hbar c)< 1.7 \times 10^{-36} and gAegVN/(c)<4.8×1056|g_{\rm A}^e g_{\rm V}^N|/(\hbar c) < 4.8 \times 10^{-56} for λ>1\lambda > 1AU. Our preferred-frame constraints, interpreted in the Kosteleck\'y framework, set an upper limit on the parameter b~e5.0×1021|\bm{\tilde {b}}^e| \leq 5.0 \times 10^{-21} eV that should be compared to the benchmark value me2/MPlanck=2×1017m_e^2/M_{\rm Planck}= 2 \times 10^{-17} eV.Comment: 4 figures, accepted for publication in Physical Review Letter
    corecore